Molecular nanotechnology and biochemistry

We utilize a broad range of chemical, biochemical and nano-engineering methods to create bio-functional molecules, surfaces and nanoparticles. These can enable a wide variety of applications, from custom integration of molecular components into diagnostic and analytical systems, to the generation of solutions for the targeted delivery of therapeutic agents to cells and tissues.

Design, synthesis, and investigation of DNA-based molecular tools

We utilize DNA-based nano-engineering methods such as 2D and 3D DNA origami, DNA bricks, DNA tiles and others to design and synthesize custom, biofunctional nanoparticles. These are used to target biological systems such as cells and viruses, as well as to generate functional biomaterials.

Design, synthesis and functionalization of nanocarriers

Nanoscale components such as peptides, proteins, DNA or antibodies are integrated with various types of delivery systems such as lipid nanoparticles (LNPs), to generate functional, targeted nanocarriers.

Biofunctionalized surfaces

Slide is placed in plasma cleaner

Biological as well as inorganic substrates such as gold, SiO2, Si3N4 and others are chemically modified and functionalized with selected biomolecules and capture components, for integration into biosensors or other analytical systems. Custom, nano-scale arrangements of individual sensing components can be implemented through single-molecule printing methods.

Enzyme-based assays

Standard and custom enzyme-linked assays such as ELISA are used to quantify the presence of selected analytes in solutions. Customized capture components can be synthesized to integrate specific capture ligands, or utilize templated multivalence for complex analytes such as viral proteins.

Investigation of biochemical processes and materials

A variety of methods are used to uncover the fundamental properties of biomaterials and nanoparticles, including atomic force microscopy (AFM), dynamic light scattering (DLS), single-particle tracking, differential scanning fluorimetry (nanoDFS), bulk shear rheology, single-particle rheology, and many more. 

Chemical and enzymatic modification of proteins and antibodies (small scales to GMP)

Using different bioconjugation methods, protein-based molecules such as antibodies, enzymes, nanobodies or other formats can be chemically modified with other accessory molecules. These include custom dye modifications for applications like flow cytometry, cytotoxic moelcules for the generation of antibody-drug conjugates (ADCs), or even more complex functionalities like kinetic DNA scaffolds.

    • Altattan B, Möser C, Smith D. Modification of DNA Nanostructures with Functional Peptides Through Copper-Free Click Chemistry. Methods Mol Biol. 2025:2901:179-189. doi: 10.1007/978-1-0716-4394-5_14
    • Coşkuner Leineweber Özge, Pothineni BK, Schumann N, Hofmann U, Möser C, Smith DM, Grundmeier G, Zhang Y, Keller A. Vancomycin-Modified DNA Origami Nanostructures for Targeting Bacterial Pathogens. Small Struct. 2025; 000:e2500246. doi: 10.1002/sstr.202500246
    • Costache F, Wang Z, Stoll A, Smith D, Reichelt H, Kölsch A, Lakshmireddy A, Lu Z. Silicon Photonic Biosensors for Label-Free Detection of Small Biomolecules. Conference on Lasers and Electro-Optics Pacific Rim (CLEO-PR) 2024, Technical Digest Series (Optica Publishing Group, 2024), paper Mo3G_1. doi: doi: 10.1109/CLEO-PR60912.2024.10676516
    • Mollenkopf P, Prascevic D, Glaser M, Smith DM, Schnauß J. A science friction story: molecular interactions in semiflexible polymer networks. Advanced Materials Interfaces 2024, 11 (5), article 202300623. doi: 10.1002/admi.202300623
    • Quint I, Simantzik J, Kaiser L, Laufer S, Csuk R, Smith D, Kohl M, Deigner H-P. Ready-to-use nanopore platform for label-free small molecule quantification: ethanolamine as first example. Nanomedicine 2023, online aheas of print, article 102724. doi: 10.1016/j.nano.2023.102724
    • Gupta SK, Joshi F, Agrawal A, Deb S,  Sajfutdinow M,  Limbachiya D, Smith DM, Gupta MK. 3DNA: A Tool for Sculpting Brick-Based DNA Nanostructures. SynBio 2023, 1(3), 226-238. doi: 10.3390/synbio1030016
    • Glaser M, Mollenkopf P, Prascevic D, Ferraz C, Käs JA, Schnauß J, Smith DM. Systematic altering of semiflexible DNA-based polymer networks via tunable crosslinking. Nanoscale. 2023 Apr 11. doi: 10.1039/d2nr05615a. Online ahead of print.
    • Freitag JS, Möser C, Belay R, Altattan B, Grasse N, Pothineni BK, Schnauß J, Smith DM. Integration of functional peptides into nucleic acid-based nanostructures. Nanoscale. 2023 Apr 12. doi: 10.1039/d2nr05429a. Online ahead of print.
    • Issmail L, Möser C, Jäger C, Altattan B, Ramsbeck D, Kleinschmidt M, Buchholz M, Smith D, Grunwald T. Prefusion-specific antibody-derived peptides trivalently presented on DNA-nanoscaffolds as an innovative strategy against RSV entry. Frontiers in Virology (2022). doi: 10.3389/fviro.2022.994843
    • Kruse M, Altattan B, Laux E-M, Grasse N, Heinig L, Moeser C, Smith D M, Hoelzel R. Characterization of binding interactions of SARS-CoV-2 spike protein and DNA-peptide nanostructures. Sci Rep. 2022 Jul 27;12(1):12828. doi: 10.1038/s41598-022-16914-9
    • Kruse M, Moeser C, Smith DM, Mueller-Landau H, Rant U, Hoelzel R, Bier FF. Measuring Influenza A virus and peptide interaction using electrically controllable DNA nanolevers. Advanced materials technologies 7 (2022), 5, 2101141, 11 Seiten. doi: 10.1002/admt.202101141
    • Smith DM, Keller A. DNA Nanostructures in the Fight Against Infectious Diseases. Adv Nanobiomed Res. 2021 Mar;1(3):2000049. doi: 10.1002/anbr.202000049. Epub 2021 Jan 6.
    • Glaser M, Deb S, Seier F, Agrawal A, Liedl T, Douglas S, Gupta M K, Smith DM. The art of designing DNA nanostructures with CAD software. Molecules. 26 (2021), 8, 2287. doi: 10.3390/molecules26082287
    • Sinjari S, Freitag JS, Herold C, Otto O, Smith DM, Stöver HDH. Tunable polymer microgel particles and their study using microscopy and realtime deformability cytometry. Journal of Polymer Science (2020), Seite 2317-2326. doi: 10.1002/pol.20200274
    • Ros S, Freitag JS, Smith DM, Stöver HDH. Charge-shifting polycations based on N, N-(dimethylamino)ethyl acrylate for improving cytocompatibility during DNA delivery. ACS omega 5 (April 2020) 16, Seite 9114-9122. doi: 10.1021/acsomega.9b03734
    • Xin Y, Kielar C, Zhu S, Sikeler C, Xu X, Möser C, Grundmeier G, Liedl T, Heuer-Jungemann A, Smith DM, Keller A. Cryopreservation of DNA origami nanostructures. Small 16 (2020) 13, 7 Seiten. doi: 10.1002/smll.201905959
    • Kielar C, Xin Y, Xu X, Zhu S, Gorin N, Grundmeier G, Möser C, Smith DM, Keller A. Effect of staple age on DNA origami nanostructure assembly and stability. Molecules 24 (2019), 14, 12 Seiten, doi: 10.3390/molecules24142577
    • Möser C, Lorenz JS, Sajfutdinow M, Smith DM. Pinpointed Stimulation of EphA2 Receptors via DNA-Templated Oligovalence. International Journal of Molecular Sciences (2018), Nr.19, 19 S. doi: 10.3390/ijms19113482
    • Sajfutdinow M, Jacobs WM, Reinhardt A, Schneider C, Smith DM. Direct observation and rational design of nucleation behavior in addressable self-assembly. Proceedings of the National Academy of Sciences, 2018. 115(26): p. E5877-5886. doi: 10.1073/pnas.1806010115 (open access)
    • Engel MC, Smith DM, Jobst MA, Sajfutdinow M, Liedl T, Romano F, Rovigatti L, Louis AA, Doye JPK. Force-Induced Unravelling of DNA Origami. ACS Nano, 2018. 12(7): p. 6374-6747. doi: 10.1021/acsnano.8b01844 (no free version available)
    • Lorenz JS, Schnauß J, Glaser M, Sajfutdinow M, Schuldt C, Käs JA, Smith DM. Synthetic Transient Crosslinks Program the Mechanics of Soft, Biopolymer‐Based Materials. Advanced Materials, 2018. 30(13): p. 1706092. doi: 10.1002/adma.201706092
    • Sajfutdinow M, Uhlig K, Prager A, Schneider C, Abel B, Smith DM. Nanoscale patterning of self-assembled monolayer (SAM)-functionalised substrates with single molecule contact printing. Nanoscale, 2017. 9(39): p. 15098-15106. doi: 10.1039/C7NR03696E (open access)
    • Schuldt C, Schnauß J, Händler T, Glaser M, Lorenz J, Golde T, Käs JA, Smith DM. Tuning Synthetic Semiflexible Networks by Bending Stiffness. Physical Review Letters, 2016. 117(9): p. 197801. doi: 10.1103/PhysRevLett.117.197801
    • Glaser M, Schnauß J, Tschirner T, Schmidt BUS, Moebius-Winkler M, Käs JA, Smith DM. Self-assembly of hierarchically ordered structures in DNA nanotube systems. New Journal of Physics. 2016. 18(5): p. 055001. doi: 10.1088/1367-2630/18/5/055001 (open access)