Biomolecular Nanostructures and Measurement Technology

The Biomolecular Nanostructures and Measurement Technology Unit investigates and develops processes and devices for the analysis and application of higher-order molecular interfaces and electronic effects. The unit's focus is on point-of-care applications, but also includes applications in the inpatient field and laboratory analytics. A broad range of methods is used, from microscopically processes up to THz spectroscopy.

Applied research and development

  • High-resolution lateral structuring of immobilisates (“nanostructures”)
  • Design of two- and three-dimensional nanostructures by controlled self-organisation of biological macromolecules (DNA, proteins)
  • Direct printing and writing of nano-scaled structures using scanning force microscopy and molecular ink
  • Establishment of nanotechnology with biomolecules; single-molecule anchoring
  • Development of nanoarrays for single-cell studies
  • Impedance spectroscopy of biomolecules
  • Spatial manipulation of molecules by electrical alternating fields (molecular dielectrophoresis)

Services

  • Fluorescence microscopy of biological cells and individual molecules
  • Scanning force microscopy in dry and moist environments, on cells and single molecules
  • Electron microscopic analyses
  • Coatings (vapour deposition, sputtering), plasma cleaning, laser structuring
  • Training in scanning force and fluorescence microscopy
  • Development of opto-electronics, optimisation with regard to sensitivity or costs
  • Computer simulation of electronic analogue circuits
  • Calculation of electric fields of arbitrary three-dimensional geometries

  • Optical microscopes (fluorescence, fluorescence service life, DIC, phase contrast, dark field)
  • Confocal laser scanning microscope with fluorescence correlation spectroscopy (FCS, Zeiss Confocor, from 350 nm)
  • Highly-sensitive CCD cameras with sensitivity to individual photons
  • Scanning force microscopy (AFM, SNOM), partially air-conditioned
  • Scanning electron microscopy
  • Laboratory for surface research (electron beam evaporator, spin coater, sputtering, plasma cleaning, CO2 laser plotter)
  • Oscilloscopes and spectrum analysers up to 30 GHz or 20 hp
  • Vector network analysers from 10 Hz to 110 GHz
  • Impedance analysers to 500 MHz
  • Lock-in-amplifier (nV range) to 200 MHz
  • Capacitance bridge with aF sensitivity (10 -18 F)
  • Fiber-optic cell culture detector

Publications

  • Ermilova E, Bier FF, Hölzel R. Dielectric measurements of aqueous DNA solutions up to 110 GHz. Phys. Chem. Chem. Phys., 16 (2014): 11256-11264.
  • Füllbrandt M, Ermilova E, Asadujjaman A, Hölzel R, Bier FF, von Klitzing R, Schönhals A. Dynamics of Linear Poly(N-isopropylacrylamide) in Water around the Phase Transition Investigated by Dielectric Relaxation Spectroscopy. J Phys Chem B. 118 (2014): 3750-3759.
  • Laux EM, Kaletta UC, Bier FF, Wenger C, Hölzel R. Functionality of dielectrophoretically immobilized enzyme molecules. Electrophoresis. 35 (2014): 459-466.
  • Otto S, Kaletta U, Bier FF, Wenger C, Hölzel R. Dielectrophoretic immobilisation of antibodies on microelectrode arrays. Lab Chip. 14 (2014): 998-1004.
  • Scheller FW, Yarman A, Bachmann T, Hirsch T, Kubick S, Renneberg R, Schumacher S, Wollenberger U, Teller C, Bier FF. Future of Biosensors: A Personal View. Adv Biochem Eng Biotechnol. 140 (2014):1-28.
  • Tanne J, Dietzel B, Scheller FW, Bier F. Nanohybrid Materials Consisting of Poly[(3-aminobenzoic acid)-co-(3-aminobenzenesulfonic acid)-co-aniline] and Multiwalled Carbon Nanotubes for Immobilization of Redox Active Cytochrome c. Electroanalysis 26 (2014): 732–738.
  • Tanne J, Kracher D, Dietzel B, Schulz B, Ludwig R, Lisdat F, Scheller FW, Bier FF. Carboxylated or aminated polyaniline-multiwalled carbon nanotubes nanohybrids for immobilization of cellobiose dehydrogenase on gold electrodes. Biosensors. 2014 Oct 22;4(4):370-386. DOI dx.doi.org/10.3390/bios4040370.
  • Bier FF. Nanobiotechnology for integration in bioanalysis. New Biotechnology, 29 (2012): S33.
  • Linck L, Reiß E, Bier F, Resch-Genger U. Direct labeling rolling circle amplification as a straightforward signal amplification technique for biodetection formats. Analytical Methods 4 (2012): 1215-1220.
  • Bier FF. Autonomous Biosensors – Technologies that help to bring biomarkers to the patient. Clinical Chemistry and Laboratory Medicine, 49 Suppl. 1 (2011): S158.
  • Bier FF, Schumacher S. Biosensoren der Zukunft: Patientennahe in vitro-Diagnostik für personalisierte Medizin. Public Health Forum, 19 (2011): 26.e1-26.e4.
  • Bier FF, Teller C. Biosensoren der Zukunft – in vitro-Diagnostik im Point-of-Care-Format für die personalisierte Medizin. Karsten Conrad, Dirk Roggenbuck, Werner Lehmann, Uwe Schedler, Günter Peine (Hrsg.): Multiparameteranalytik in Forschung und Praxis, Pabst Publishers Lengerich 2011 ISBN 978-3-89967-703-4, pp. 185-188
  • Breitenstein M, Nielsen PE, Hölzel R, Bier FF. DNA-nanostructure-assembly by sequential spotting. J Nanobiotechnology 9 (2011): e54.
  • Reiß E, Hölzel R, Bier FF. Preparation of DNA Nanostructures with Repetitive Binding Motifs by Rolling Circle Amplification. Methods Mol Biol. 749 (2011):151-168.
  • Stanke S, Bier FF, Hölzel R. Fluid streaming above interdigitated electrodes in dielectrophoresis experiments. Electrophoresis 32 (2011): 2448-2455.
  • Breitenstein M, Hölzel R, Bier FF. Immobilization of different biomolecules by atomic force microscopy. J Nanobiotechnology. 8 (2010): e10.
  • Henning A, Bier FF, Hölzel R. Dielectrophoresis of DNA: Quantification by impedance measurements. Biomicrofluidics 4 (2010):, 022803 (9pp.) highly accessed.

Patents

  • Bier F, Hölzel R. Method and device for directed immobilisation of nano-and micro-objects on a substrate surface, immobilisates obtained thereby, and use thereof. WO 2013/071994 A1. 23 May 2013.
  • Duschl C, Lankenau A, Lutz JF, Laschewsky A, Wischerhoff E, Fuhr GR, Bier F. Substrate, culture facility and culture method for biological cells. EP 2 550 352 A1. 30 Jan. 2013.