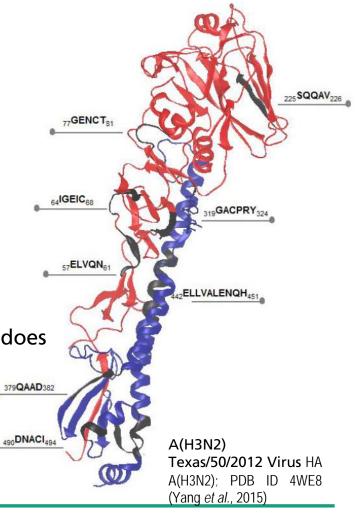
MAPPING THE ANTIBODY RESPONSE TO VACCINES DIRECTLY FROM PATIENT SERUM

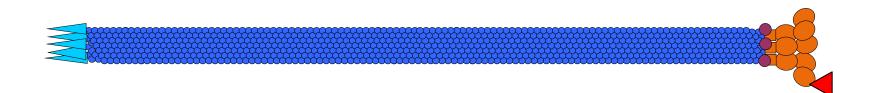
Statistical analyses based on NGS and novel library technologies

Michael Szardenings Fraunhofer Institute for Cell Therapy and Immunology, Leipzig, Germany

Conflict of interest

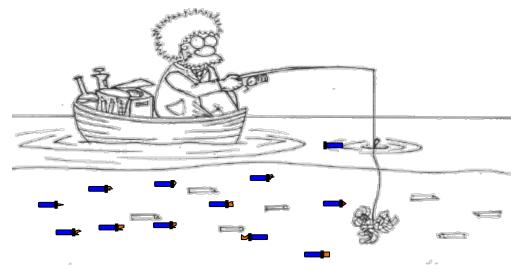

- Managing director of the Epitopic GmbH dealing with antibody epitope fingerprinting and leading the Fraunhofer group applying the technology on sera.
- Patentholder on several relevant technology patents

Always hoped our immune system would not be so
 ******** complex as it turns out to be

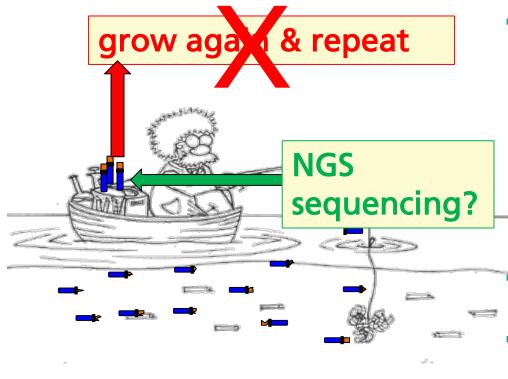


Vaccine Epitopes

- This talk is about how to predict/identify multiple epitopes from a single drop of patient blood.
- Four epitopes of this antigen are described in the literature, four more were identified.
- All based on peptide phage display, which usually does not results in more than a few epitopes.



modifying the rules of the game STATISTICAL PEPTIDE PHAGE DISPLAY


Fingerprinting Antibody Epitopes

Standard peptide phage display is, as most people will agree to, a kind of lottery with respect to the sequences finally identified as binders. After many years without real progress Next Generation Sequencing (NGS) is now more frequently being used. But this is only partially improving the results, since it is still **relying on the** enrichment of individual clones.

Fingerprinting Antibody Epitopes

- Applying a new combination of
 - Statistically reliable random peptide phage library
 - Optimized NGS protocols
 - Stringent sequence data filtering
 - Specially designed software for calculating statistics of short motifs
 - ...this allows to include not only enriched sequences...
- ...and gives access to hundreds of sequences in the analyses, which would otherwise be discarded.

Library Design ENTE-1


```
NYY: any codon ending on certain non palindromic NN
NZZ: any codon (no Trp no Met)
N##: any codon (no Cys no Met)
N++: any codon MUST end with a K, NO Cys
NNC: any codon ending on C
(or NNK instead of N++)
```

- Trinucleotide based synthesis
- Max 18 codons per position
- Reduced probability of too close Cys
- Reduction of Met and Trp codons
- Contains significant fraction of 8-mer combinations

Statistics of the new library ENTE-1

	Gly	/#xx	#xx	+xx	c/s	#xx	#xx	#xx	#xx	Zxx	Zxx	Yxx	Zxx	Zxx	Zxx	Zxx	Cxx	Ser	Ser
	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19
А	0	39398	90956	186896	522	106968	111974	119732	1 2 5638	145486	143878	330	115070	141808	150810	148728	210284	0	0
С	0	416	442	972	1568218	1508	384	382	514	166848	16686 <mark>2</mark>	326870	148224	1819 2 6	178966	186930	550978	0	0
D	0	121218	147304	448	54	132024	128594	132772	135180	1331 22	133244	444	125948	119076	122484	89678	373274	0	0
Е	0	265552	214760	200	52	181604	168106	166774	173500	171608	183564	361690	16479 <mark>2</mark>	154616	157474	156350	120	0	0
F	0	79882	93234	132368	782	121944	133130	1 2 4916	123726	135898	135512	388	135932	148972	141866	140308	419896	0	0
G	2580938	118170	102104	123210	288	103164	9814 <mark>2</mark>	103158	103184	10593 <mark>2</mark>	118254	210228	10389 <mark>2</mark>	100738	99158	103104	302	0	0
Н	0	183728	210022	276224	218	193046	199854	198690	201420	198948	197830	712	215206	199326	197608	200372	662	0	0
	0	261530	148836	670	60	152052	131096	125206	13157 2	1 2 1100	125694	16634 <mark>2</mark>	1 2 5310	1 2 1888	120926	117576	307086	0	0
Κ	0	123962	113660	270	44	9631 2	8834 <mark>2</mark>	82500	84762	85532	90728	141044	88136	78988	75258	70150	92	0	0
L	0	76996	101696	135064	180	107394	1 2 1148	1 2 3968	1 2 1546	1 2 6398	114968	454	1 42 988	135062	129778	143870	600	0	0
М	0	136	132	190552	146	90	90	82	118	92	68	44	1 2 6	106	72	80	8	0	0
Ν	0	242394	173660	222964	164	160878	14618 <mark>2</mark>	13914 <mark>2</mark>	137072	10093 <mark>2</mark>	98022	396	99174	94478	96654	9181 <mark>2</mark>	225742	0	0
Ρ	0	133074	15134 <mark>2</mark>	179242	464	155758	144530	145170	148064	144820	140742	260560	161584	139658	139098	141702	150	0	0
Q	0	167382	203670	276748	198	184028	2 11 2 36	2 13484	203750	205056	18736 <mark>2</mark>	398642	221298	207610	212524	222028	32	0	0
R	0	59562	11170 <mark>2</mark>	155384	522	104284	117846	1 2 3140	1 2 1788	1 22 634	121240	189740	125332	125692	121258	132628	368	0	0
S	0	97316	107976	145310	1007238	129726	1 2 6148	125332	1 2 1664	1 2 9168	127548	664	130660	138544	134466	131084	868	2580938	2580938
Т	0	155464	132292	164596	254	1 2 8358	126256	1 2 3696	122298	122874	122012	436	125248	1 2 1086	1 2 4680	1 2 5946	320	0	0
۷	0	215518	194452	214970	384	197740	191790	190844	194094	197602	214250	324	190598	199846	205314	204654	722	0	0
W	0	83942	127436	174576	<mark>336</mark>	159568	171438	179928	164760	160	82	280202	562	62	54	26	56	0	0
Y	0	155298	155262	274	814	16449 <mark>2</mark>	164652	162022	166 2 88	166728	159078	241428	160858	171456	1 724 90	173912	489378	0	0

No such codon in the oligonucleotide, these are the errors of Illumina MiSeq

Naive ENTE-1 library

Statistics: Library diversity

	ENTE-1	ENTE-1	Ph.D.™-12*	ENTE-1 after mAB	ENTE-1 after mAB
	before expansion	final library	(commercial library)	10D2	10D2
				1 st selection	2 nd selection
Total number	1,241,361	2,800,721	17,609,210	294,193	411,931
Sequence found 1X	1,186,637 (96%)	2,018,083 (72%)	736,953 (4.2%)	76,972 (26.2%)	16,574 (4%)
Sequence found 2X	22,853 (3.7%)	351,921 (25.1%)	114,791 (1.3%)	37,533 (25.5%)	4,401 (2.1%)
Sequence found 3X	2,002 (0.5%)	24,957 (2.7%)	47,187 (0.8%)	16,079 (16.4%)	1,492 (1.1%)
Sequence found 4X	21 (0.1%)	838 (0.1%)	26,184 (0.6%)	7,074 (9.6%)	759 (0.7%)
Sequence found 5X	131 (0.1%)	71	17,098 (0.5%)	3,338 (5.7%)	478 (0.6%)
Sequence found 6X	48	14	11,727 (0.4%)	1,672 (3.4%)	437 (0.6%)
Sequence found 7X	21	6	8,801 (0.3%)	817 (1.9%)	309 (0.5%)
Sequence found 8X	5	5	7,057 (0.3%)	504 (1.4%)	268 (0.5%)
Sequence found 9X	4	1	5,531 (0.3%)	297 (0.9%)	231 (0.5%) 228 (0.5%)
Sequence found 10X	6	2	4,678 (0.3%)	191 (0.6%)	228 (0.5%)
Sequence found 11X	2	1	3,972 (0.2%)	142 (0.5%)	187 (0.5%)
Sequence found 12X	2	1	3,326 (0.2%)	100 (0.4%)	155 (0.5%)
Sequence found 13X	1		2,939 (0.2%)	70 (0.3%)	156 (0.5%)
Sequence found 14X	2		2,542 (0.2%)	56 (0.3%)	155 (0.5%) 156 (0.5%) 119 (0.4%) 110 (0.4%)
Sequence found 15X	1		2,253 (0.2%)	46 (0.2%)	110 (0.4%)
Sequence found 16X			2,074 (0.2%)	45 (0.2%)	95 (0.4%)
Sequence found 17X			1,825 (0.2%)	36 (0.2%)	98 (0.4%)
Sequence found 18X			1,713 (0.2%)	32 (0.2%)	110 (0.5%)
Sequence found 19X			1,495 (0.2%)	22 (0.1%)	90 (0.3%)
Sequence found 20X			1,366 (0.2%)	31 (0.2%)	90 (0.3%) 85 (0.4%) 2,224 (84.5%) 631 (67.1%)
Sequence found > 20X			65,305 (89.1%)	308 (5.6%)	2,224 (84.5%)
Sequence found > 100X			20,241 (82.1%)	26 (1.6%)	631 (67.1%)
Sequence found > 1000X			2,844 (56.6%)	0	45 (29%)

Statistics: Amino Acid Distribution in "Normal" Libraries Almost 10x difference in amino acid statistics: C7C library, NNK synthesis (312,352 sequences)

data from: Dias-Neto et al:Next-generation phage display: integrating and comparing available molecular tools to enable cost-effective high-throughput analysis. PLoS One. 2009 Dec 17;4(12)

	A1	A2	A3-	A4	A5	A6	A7
A	3398	3223	3422	3475	3592	3697	4161
R	4564	5649	5669	5316	4691	4484	5326
N	826	701	755	888	750	822	834
D	1531	1385	1636	1101	1472	1654	1288
C	2387	2171	2188	2215	2635	2402	2227
Q	902	1131	1159	656	750	816	885
E	1253	1318	1368	1009	1265	1362	936
G	5308	5196	4750	4652	5350	5273	4220
Н	1062	1089	1273	715	901	880	1082
I	1143	1045	1064	1616	1223	1167	1124
L	4233	4402	4484	3440	3934	3941	3994
K	614	585	564	766	568	682	531
М	928	858	669	1080	773	876	658
F	1906	1648	1613	1441	1783	1597	1190
P	1723	1882	2059	1751	1769	1704	3384
S	3909	3881	3768	5875	4564	4382	5047
Т	1334	1310	1298	2595	1555	1591	2143
W	1701	1824	1460	1823	1802	1847	1309
Y	1267	1170	1163	918	1124	1121	1003
v	4629	4149	4254	3283	4117	4320	3276

Preparing For Statistical Data Mining

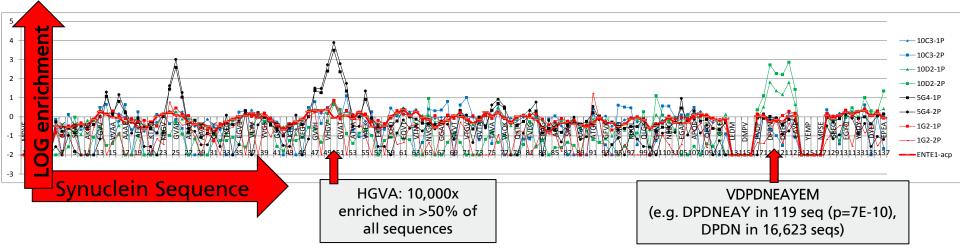
- Phage Display selection is done with an optimised immunotube procedure.
- NGS is done on tagged PCR products in an illumina MiSeq
- Remaining data is indexed and stored in a data base ...
- STOP!
- The error rate in NGS is prohibitive for analyzing individual sequences:
 - 0.1% on the illumina machines under optimal conditions
 - In our 180 bp reads >18% of all sequences would contain a wrong base, plus additional artefacts from PCR and cloning...
- In standard approach procedure we purge the data of low quality reads and in an additional step remove all sequences containing a single read error compared to the library's trinucleotide set up:

All Seq	Va	lid Seq	Motif Count
541,613		353,725	138,673
571,359		358,291	137,181
406,754		272,396	139,095
356,731		231,764	135,209
	541,613 571,359 406,754	All Seq Va 541,613 571,359 406,754 356,731	541,613 353,725 571,359 358,291 406,754 272,396

Preparing For Statistical Data Mining

- In standard approaches all 3-mer and 4-mer motifs are indexed, frequency and probability are calculated, compared and related sequences can be retrieved and analyzed.
- For monoclonal antibodies a single selection round is usually not enough to enrich sequences but the enrichment is seen on the shorter motif level:

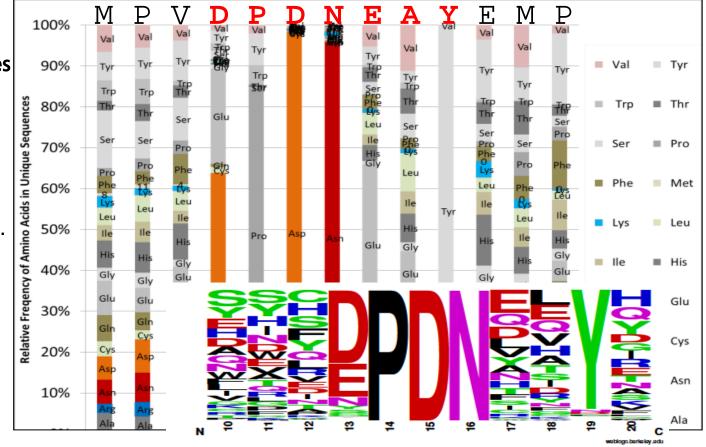
ld 😑	Motif 오	Count ອ	Freq 오	Expect 😂	Enrichment (log!) 🗢	First selection round on mAB 10D2!
66091	DPEN	2445	3,17412	5,12765	1,95354	
65785	DPPN	2365	3,18856	5,12765	1,93909	Mapping of mAB 10D2, epitope in synuclein:
4168	NEVY	2340	3,19318	5,12765	1,93447	DMPV DPDNEAY EMPS
66128		1459	3,39834	5,21223	1,81389	
4740		1727	3,3251	5,12765	1,80255	
65998	DPHN	1272	3,45791	5,21223	1,75433	Count = Total number in data set
100344	PPNE	1387	3,42032	5,16191	1,74159	Freq = -log(count/total sequences)
33118	EWIW	125	4,46548	6,13503	1,66955	Expect = -log(theoret./total sequences)
5080	NDEY	1252	3,46479	5,12765	1,66286	Enrichment = (Expect-Freq)


Knowing the antigen's sequence allows direct search for it's shorter motifs the data base

Motif Search in NGS Data – Example Three Synuclein mABs

 The motif enrichment (NOT THE FREQUENCY) in data sets from selection experiments can be plotted against the entire alpha synuclein protein's 4-mer sequences. This curve reveals potential epitopes. (Antibodies from AJ Roboscreen GmbH)

Explanation: blue/green/black different monoclonal antibodies; red non specific data sets; Y-axis is log enrichment over expected values.

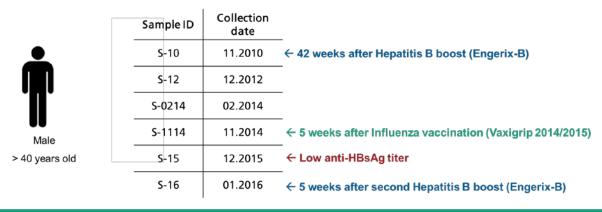


Epitope Fingerprinting mAB 10D2

Here a broad analyses of all 1149 individual Sequences with either DPD, PDN or DNE motif.

Sequences were aligned and the frequency of the amino acids is listed. These are corresponding to

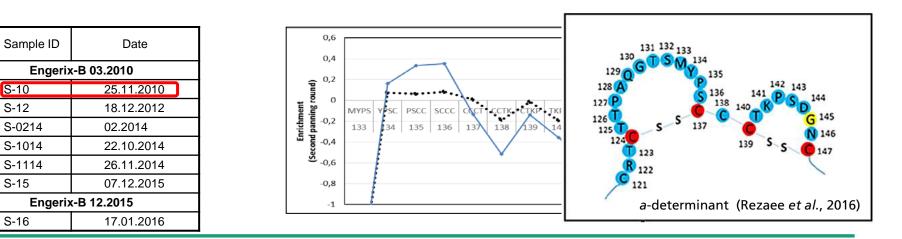
> 15,000 observed sequences from the second selection round.



maps of antigenicity FINGERPRINTING ANTIBODY EPITOPES IN SERUM

Fingerprinting Vaccine Antibody Epitopes in Serum

- Serum samples collected from one patient over several years have been used for this immunome study. The results have been compared for vaccine antigens received in this time period.
- Hepatitis Antigen epitope signal strength varies before and after vaccination, epitopes shift with the time
- Epitopes from influenza virus immunisation can be also mapped. In addition an infection can be seen with a different H3N2 virus.

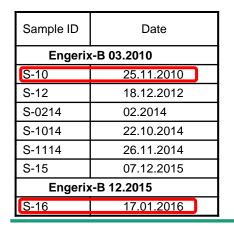


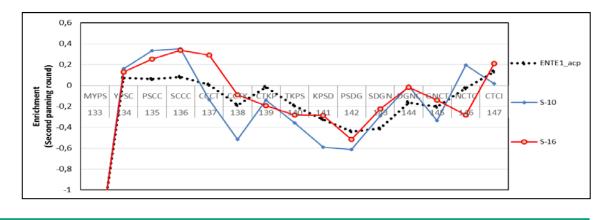
Example HBsAg – Epitope PSCCC

Several motif related to the Hepatitis B epitope have been identified. The significant but very unusual epitope below showed an interesting change with respect to motif frequencies.

Antigen	Motif	First pann	ing round	Second panning round					
Antigen	WOU	Enrichment	Unique seq	Enrichment	Unique seq	Found motifs	Count		
	PSCC	0,08287	17	0,25451	24	VVTSYGIFSQCPSCCC	1**		
GTSMYPSCCCTKPSDGNC	sccc	0,17992	19	0,33903	20	WVNCNIYR SCCCT RKD		4	
	СССТ	0,23766	14	0,29074	13				

**more single sequences with this motif found

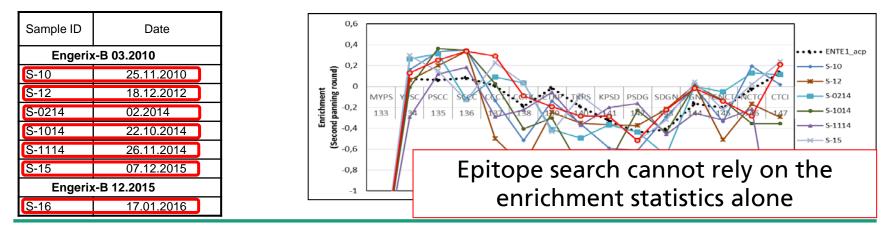




Example HBsAg – Epitope PSCCC

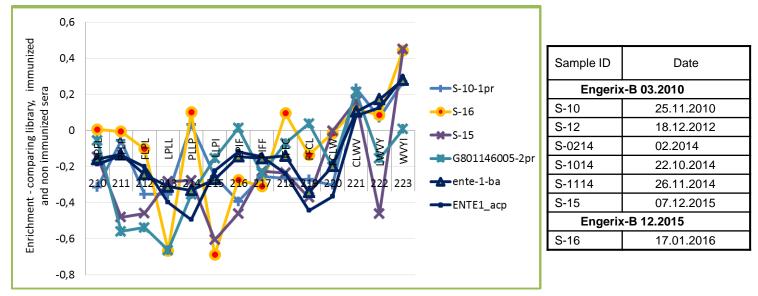
Antigen	Motif	First pann	ing round	Second panning round					
Antigen	WOU	Enrichment	Unique seq	Enrichment	Unique seq	Found motifs	Count		
	PSCC	0,08287	17	0,25451	24	VVTSYGIFSQCPSCCC	1**		
GTSMYPSCCCTKPSDGNC	SCCC	0,17992	19	0,33903	20	WVNCNIYR SCCCT RKD		4	
	СССТ	0,23766	14	0,29074	13				

**more single sequences with this motif found



Example HBsAg – Epitope PSCCC

Antigen	Motif	First pann	ing round	Second panning round					
Antigen	WOU	Enrichment	Unique seq	Enrichment	Unique seq	Found motifs	Count		
	PSCC	0,08287	17	0,25451	24	VVTSYGIFSQCPSCCC	1**		
GTSMYPSCCCTKPSDGNC	SCCC	0,17992	19	0,33903	20	WVNCNIYR SCCCT RKD		4	
	СССТ	0,23766	14	0,29074	13				

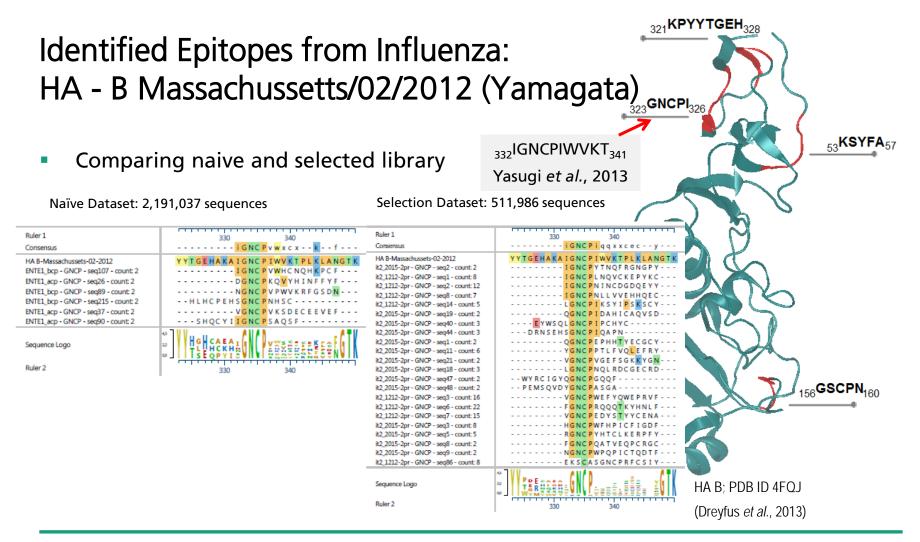

**more single sequences with this motif found

Example HbsAg C-Terminal Epitope

- A C-terminal epitope is described in the literature,
- Statistical significance is reduced because of less stringent conservation of amino acids, i.e. if not all four amino acids of a 4-mer motif are required for binding enrichment of the motif alone is not the only tool:

Example HbsAg C-Terminal Epitope

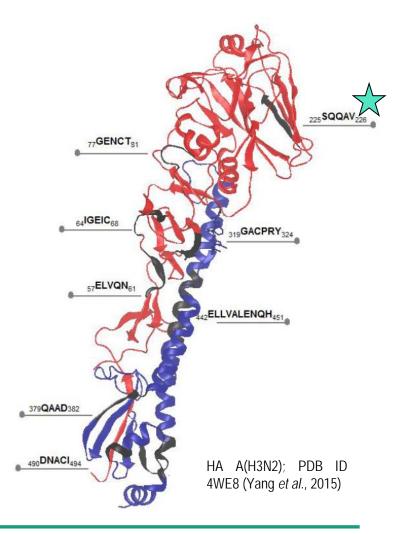
Comparing naive library vs. pre-boost vs. post boost sera: Only sequences found with at least 4 aa identity to the antigen's C-terminal epitope are listed.


	-	-		Consensus	xwx <mark>C I WV Y i</mark> x c
Ruler 1	L	T T T		HBsAg-Protein-S	PFLPLLPIFFCLWVYID
Kulei I	220 230	1		it2_2016-2pr-CxWVY-seq38[count=9 it2_2016-2pr-CxWVY-seq22[count=8	
Consensus	fstCLWVYigf·			it2_2016-2pr-C/WVY-seg34[count=8	IHSCIWVYQVPVHIRC-
UB-to Protein C	LLPIFFCLWVYI	Ruler 1	220 230	it2_2016-2pr-CL/VY-seq1[count=7	EDWCL FVYQQGIQTCN -
HBsAg-Protein-S		Consensus	x frClWVYidyxxx-		
ENTE1_acp-CxWVY-seq28 count=2	H P P F C A W V Y H T D ·			the contraction and accounted	NS <mark>FCLW</mark> QEAHRCAHEC-
ENTE1_bcp-CxWVY-seq164 count=2	T F R C I W V Y Q P I C	HBsAg-Protein-S	LLPIFFCLWVYI	it2_2016-2pr-CxWVY-seq5 count=6 it2_2016-2pr-WVYI-seq1 count=6	EWTCHWYYIVWECTVA-
ENTE1_acp-CxWVY-seq129 count=2	K F T C I W V Y N Q E F	it2_2015-2pr-CxWVY-seq9 count=5	H G R C E W V Y I A I A H V -	it2_2016-2pr-CLWV-seq9[count=6	SNTCLWVHCNINYHIA-
ENTE1_bcp-CxWVY-seq247[count=2	N S T C EWV Y RHQF	it2_2015-2pr-LxVYI-seq1 count=5	WVPDSSCLFVYI	it2_2016-2pr-WWI-seq7[count=6	RDWCNTWVYIYF+
		it2_2015-2pr-CxWVY-seq5 count=3	Q FMC NWV Y I D C E C E	it2_2016-2pr-VMD-seq17[count=6	GDQCEVGHVYIDGLHY
ENTE1_acp-CxWVY-seq78 count=2	Y V Q <mark>C S W V</mark> Y Y I S			its_solo-spi-crimit-sedorogiu-s	
ENTE1_bcp-CLWxY-seq40 count=2	NWG <mark>CLW</mark> LYVGP1	it2_2015-2pr-CxWVY-seq2 count=4	V F V C DWV Y VQQ E V N -	the past and past of the section of the	
ENTE1_bcp-CLWxY-seq12 count=2	R S V W L I C L W A Y N D Y	it2_2015-2pr-CxWVY-seq19 count=4	I H A C R W V Y K L Y H H H	it2_2016-2pr-C/WVY-seq41[count=5	IARCYWVYPQEDVGVC-
ENTE1_bcp-CLWxY-seq62 count=2	SAHCLWRYQIPE	it2_2015-2pr-CLWxY-seq5 count=17	DNG <mark>CLW</mark> TYRRYCIC - ·	it2_2016-2pr-WWI-seq29 count=4	NEVSLPVWVYIKCQCD
	RCKRYACLWHYHCY	it2_2015-2pr-CxWVY-seq11 count=7	A K R C PWV Y Q P Y N H V -	it2_2016-2pr-VMD-seq2[count=4	NGQSEVYIDFQFFKCF
ENTE1_acp-CLWxY-seq53 count=2		it2_2015-2pr-CxWVY-seq1 count=7	SIRCDWVYEDWPFV-	ft2_2016-2pr-CLWV-seq8[count=4	
ENTE1_acp-CLWxY-seq73 count=2	F L N C L WD Y R A C	it2_2015-2pr-CxWVY-seq4[count=4	Y G P C NWV Y E D I R C E -	in Cross she can a sudeless a	FLTSSLWVYI PCATYD
ENTE1_bcp-LWVxI-seq24 count=2	- T Y Q S T H L W V Y I F F I			it2 2016-2pc-WWI-seg15[count=4	· · · · · · · I ELCSVWVYI YCEGEF · ·
ENTE1_bcp-LWVxI-seq77 count=2	WSQFSILLWVYIGF	it2_2015-2pr-CxWVY-seq10 count=4	SQLCDWVYKYYCVD -	in Contraction of the contract	HIT <mark>CLDVYI</mark> YWQCYLN-
ENTE1_bcp-LxVYI-seq40[count=2	- TYQSTHLWVYIFFL	it2_2015-2pr-CxWVY-seq14 count=3	Q S H C H W V Y E H I G F L		KQGCHWVYLNELHEHC-
		it2_2015-2pr-CLWxY-seq2 count=3	P P R C L W D Y S F W C Y P	it2_2016-2pr-CxWVY-seq31 count=4 it2_2016-2pr-FCLW-seq2 count=3	
ENTE1_bcp-LxVYI-seq118 count=3	G <mark>VYI</mark> QH[it2_2015-2pr-CLWxY-seq4 count=3	L Y N C L WW Y L S Q F V S -		PKTSIYVYIDRTYAVY-
ENTE1_bcp-LxVYI-seq126 count=2	WSQFSIL LWVYIGF	it2_2015-2pr-CLWxY-seq6 count=3	RNACLWWYPFQHAL -	it2_2016-2pr-WWI-seq12[count=3	YHRCFYWVYIRFYLCN
	43	it2_2015-2pr-LWVxl-seq4[count=8		it2_2016-2pr-CLxW-seq2[count=3	
Sequence Logo	22 R S a = = + (= + +				
Sequence Logo	WINESESS MINE RESE	it2_2015-2pr-LxVYI-seq6 count=3			IR STELLCIWVYSAD
	40 LESSER 22218221		4], 💥 🍋 🖌 🖌 🖌		GEQC IWVYCCIEYQVC-
Ruler 2	220	Sequence Logo			IWMCHWYYCYYHAHLA-
	220	Sequence Ebgo			VDNCNWVYTLEEIYCD - PYFCGWVYAKRDCOPC -
				\sim \sim	YKVCFVYIDNKHSRVN-
		Ruler 2	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	15 17 18 19	N C IDACLWVASIQIECYN-
				it2_2016-2pr-WWI-seq28[count=3	VIMCVHWWVYICCIHY
N		Pre vaccine boost serum		Post boost serum	NVACLWVEQAWETRSD-
Naïve library				30 2010 Des 01114 ave201emet-0	
15 sequences >1x· 1	>3x / data set 2,191,037	27 sequences >1x ; 16 >2	2x / data set 253,288	65 sequences >1;	37 >2 / data set 476,099
15 sequences > 1x, 1	>5% / data set 2, 15 1,057			it2_2016-2pr-VMD-seq7[count=3	IQHCAVYIDYEQLDTD -
				it2_2016-2pr-CrWVY-seq37[count=3	VAMC SWVYD PEISEID -
				it2_2016-2pr-CxWVY-seq39[count=2 it2_2016-2pr-CxWVY-seq40[count=2	
				it2_2016-2pr-CrWVY-seq40[count=2 it2_2016-2pr-CLWxY-seq5]count=2	NWVCLWWYSHGFQHVC-
© Fraunhofer IZI				it2_2016-2pr-CLWXY-seq6[count=2	TTVCLWPYTCCCEFVD -
		slide no.	21	it2_2016-2pr-CLWXY-seq9[count=2	YQS <mark>CLW</mark> WYTEPEDKNA-
				2016-2nc-CLWW-con10[count=2]	V POCIWRY TCOSPREA

- - - - - - - EHRCIWPYEEEYIKTI

#2 2016-2nc-CI WW-sen11[count=2

321 KPYYTGEH328 Identified Epitopes from Influenza: HA - B Massachussetts/02/2012 (Yamagata) 53KSYFA57 Five potential epitopes identified Four epitopes decribed in the literature Cross-reactive neutralizing epitopes GSCPN160 HA B; PDB ID 4FQJ (Dreyfus *et al.*, 2013)

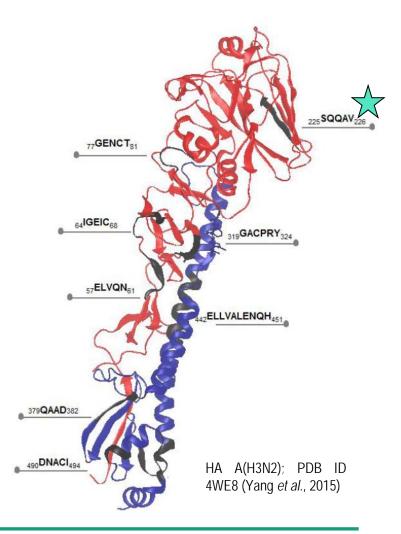


Identified Epitopes from Influenza: HA - A(H3N2) Texas/50/2012 virus

- Nine potential epitopes identified
- Four epitopes described in the literature

• One epitope in the receptor binding site \propto

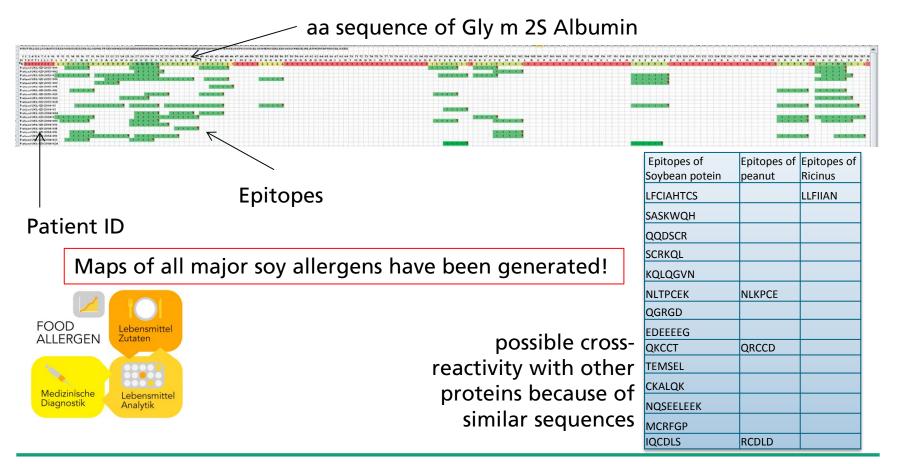
(residues 219-228) [Yang et al., 2015; 10.1016/j.virol.2014.12.024]



Identified Epitopes from Influenza: HA - A(H3N2) Texas/50/2012 virus

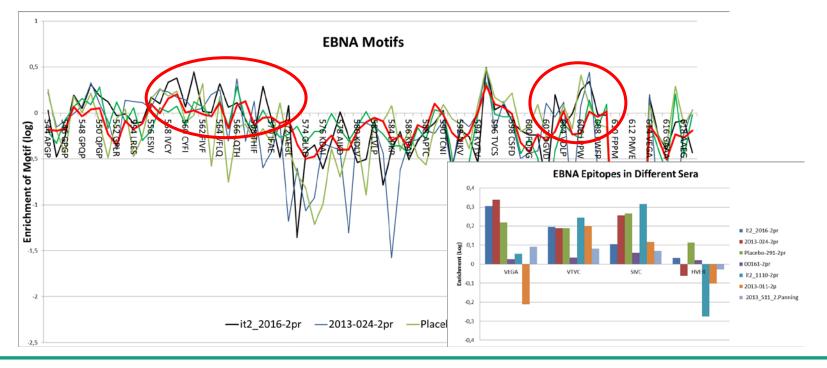
Ruler 1	220 230 240
Consensus	q i v - q SQQ A V x
HA A-Texas-50-2012 H3N2	S G R I T V S T K - R S Q Q A V I P N I G F R P R I R
it2_1114-2pr - QQAV - seq28 - count: 9	H H N S Y D A Q A Q Q A V R F Y
it2_1114-2pr - QQAV - seq18 - count: 8	S T P C V T Q Q A V I E V P D F
it2_1014-2pr - QQAV - seq8 - count: 11	- QWH C K Q E N H Q Q A V I V C
it2_1114-2pr - SQQA - seq59 - count: 10	K H Q C Y T L - Q S Q Q A H I A Y
it2_1114-2pr - SQQA - seq4 - count: 5	I D - A S Q Q A P H E Q Y H F F D
it2_2015-2pr - QQAV - seq12 - count: 4	Y D H S T G Q Q A V E P C D L Y
it2_2015-2pr - QQAV - seq11 - count: 5	W I W S Y L Q Q A V K G Y I I I
it2_1114-2pr - QQAV - seq4 - count: 4	E S - <mark>R S Q Q A V</mark> A R G A L P E A
it2_1114-2pr - SQQA - seq87 - count: 5	- R G S S <mark>V</mark> G I Q - S S Q Q A N Y N
it2_1114-2pr - QQAV - seq32 - count: 5	- K F R C Y Q Q D Y Q Q A V C Q A
it2_2015-2pr - QQAV - seq26 - count: 5	- I L F C I E H V - P C Q Q A V G C
it2_2015-2pr - QQAV - seq29 - count: 7	P S H S A G E S T L Q Q A V Q Y
it2_2015-2pr - QQAV - seq33 - count: 4	T A N C - E V L Y - Q L Q Q A V R N
it2_1114-2pr - SQQA - seq3 - count: 7	
it2_1114-2pr - SQQA - seq5 - count: 4	
it2_1114-2pr - SQQA - seq45 - count: 4	E F V - S S Q Q A L V E D L - N Y A
it2_1114-2pr - SQQA - seq52 - count: 5	AQC Y SQQAA - W S AQC F
it2_1114-2pr - SQQA - seq88 - count: 5	- E V V S S F P T - V S Q Q A Q V C
it2_1114-2pr - SQQA - seq60 - count: 14	V GMC I NW - E S Q Q A Q L Q F
it2_2015-2pr - QQAV - seq25 - count: 14	- F L Q C N V Q S - D T Q Q A V C D
it2_1014-2pr - SQQA - seq4 - count: 4	V P - A S Q Q A W T H P E Y S L F
it2_1014-2pr - SQQA - seq28 - count: 4	Q H T - C <mark>S Q Q A</mark> A V Y S P Y P F
it2_1014-2pr - SQQA - seq30 - count: 4	DSV-C <mark>SQQA</mark> HCWFT-LAY
it2_1014-2pr - SQQA - seq54 - count: 8	WSQWSTIIQ - P SQQA
it2_1014-2pr - QQAV - seq10 - count: 4	- D N F C Y Q A P V Q Q A V E V C
it2_1014-2pr - QQAV - seq27 - count: 5	- R T A S W Q F V - G P Q Q A V N N
it2_1014-2pr - QQAV - seq28 - count: 9	- T Q W S Y R F Q - Q G Q Q A V E D

72 sequences with the active site motif, only those >3x are shown (vs 17 2x in larger naive data set)



Applications

- This study was the first time we applied our method to a single person's serum samples collected over several years.
- Food allergies and infectious disease have been our major areas of interest and peptide (consensus) mimotopes have been confirmed with about 50% success rate by applying peptide arrays. But in all those cases we used data from many different patients to compare and extract epitope information.
- For any antigen or allergen maps of antigenicity can be prepared.


Gly m 2S Albumin Antigenicity Map

Epstein-Barr-Virus Signatures

 Being present in most of the population, EBNA1 C-terminal signatures have been found in almost every serum and are useful as internal markers

Preliminary Conclusions

- Technical: It works....
- Practical: Detection limit about 50-100 antibody molecules in 1 µl of serum, enough to even detect IgE
- Theoretical: Even the immunome of a single patient is undergoing permant changes.

Thank you for listening & Thanks to....

Lisbeth Ramírez Caballero, Nicolas Delaroque, Karolin Kern, Dorothe Wehrmann, Maria Helm, Aastha Jain, Markus Puder and many more... PolyQuant GmbH: Markus Fischer, Iris Kobl (Bad Abbach, Germany) Prof. Ines Neundorf (Cologne University) for peptide synthesis; IZI-BB, Potsdam (peptide array preparation): E. Ehrentreich-Förster; AJ Roboscreen GmbH: I.

Lachmannn, U. Wagner; Veterinary Faculty, Leipzig: A. Rückner, T. Vahlenkamp;

POLYQUANT EPITOPIC

These studies are funded by Fraunhofer Gesellschaft, MAVO project LowAllergen Federal Ministry for Economic Affairs and Energy, (grant. no. KF2302706). Supported by:

Federal Ministry for Economic Affairs and Energy

on the basis of a decision by the German Bundestag

Contacts

Michael Szardenings Fraunhofer IZI (Fraunhofer Institute for Cell Therapy and Immunology) Ligand Development Unit

Perlickstr. 1, 04103 Leipzig, Germany Tel: +49-341-35536 2805 Fax: +49-341-35536 82805 Cell: +49 159 044 268 49 michael.szardenings@izi.fraunhofer.de www.izi.fraunhofer.de

EPITOPIC GmbH Perlickstr. 1, 04103 Leipzig, Germany www.epitopic.com info@epitopic.com Phone: +49 341 23028939 Cell: +49 160 97953148

in North America: Catapult Intelligence, LLC One Kendall Sq Bldg 200 Ste 2203 Cambridge, MA 02139 www.catapultintel.com info@catapultintelligence.com

Further downloads available at: https://www.izi.fraunhofer.de/en/departments/leipziglocation/immunology/ligand-development.html and www.epitopic.com

